首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   3篇
测绘学   1篇
大气科学   3篇
地球物理   18篇
地质学   40篇
海洋学   3篇
天文学   11篇
综合类   1篇
自然地理   13篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
41.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
42.
To evaluate the potential of using surficial shell accumulations for paleoenvironmental studies, an extensive time series of individually dated specimens of the marine infaunal bivalve mollusk Semele casali was assembled using amino acid racemization (AAR) ratios (n = 270) calibrated against radiocarbon ages (n = 32). The shells were collected from surface sediments at multiple sites across a sediment-starved shelf in the shallow sub-tropical São Paulo Bight (São Paulo State, Brazil). The resulting 14C-calibrated AAR time series, one of the largest AAR datasets compiled to date, ranges from modern to 10,307 cal yr BP, is right skewed, and represents a remarkably complete time series: the completeness of the Holocene record is 66% at 250-yr binning resolution and 81% at 500-yr binning resolution. Extensive time-averaging is observed for all sites across the sampled bathymetric range indicating long water depth-invariant survival of carbonate shells at the sediment surface with low net sedimentation rates. Benthic organisms collected from active depositional surfaces can provide multi-millennial time series of biomineral records and serve as a source of geochemical proxy data for reconstructing environmental and climatic trends throughout the Holocene at centennial resolution. Surface sediments can contain time-rich shell accumulations that record the entire Holocene, not just the present.  相似文献   
43.
Holocene and modern travertine formed in spring-fed Havasu Creek of the Grand Canyon, Arizona, was studied to determine the factors governing its oxygen-isotope composition. Analysis of substrate-grown travertine indicates that calculated calcite-formation temperatures compare favorably with measured water temperatures, and include silt-rich laminae deposited by monsoon-driven floods. Ancient spring-pool travertine is dated by U-series at 7380 ± 110 yr and consists of 14 travertine-silt couplets of probable annual deposition. One hundred eighty high-resolution δ18O analyses of this mid-Holocene sample average −11.0‰ PDB. The average value for modern travertine is 0.5‰ lower, perhaps because mid-Holocene temperature was higher or there was proportionally greater summer recharge. δ18O cyclicity in the mid-Holocene travertine has average amplitude of 1.9 ± 0.5‰ PDB, slightly less than the inferred modern-day annual temperature range of Havasu Creek. The annual temperature range might have been reduced during the 14-yr interval compared to present, although other non-temperature factors could account for the muted annual variation. Silt-rich laminae within isotopically lower calcite in the modern and mid-Holocene travertine verifies the seasonal resolution of both samples, and suggests that similar temperature-precipitation conditions, as well as monsoon-generated summer floods, prevailed in the mid-Holocene as they do throughout the Grand Canyon region today.  相似文献   
44.
A subset of the unidentified EGRET γ-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 ± 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (∼15) and small (∼1) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.  相似文献   
45.
46.
The nuclear-encoded small subunit ribosomal RNA gene (18S rDNA) of 16 isolates of Chondrus from 8 countries were sequenced. A total of 1796 nucleotides were obtained and aligned with the phylogenetic analysis conducted. The results suggest that the entity from Dalian, China, regarded as C. sp1 is C. pinnulatus. The C. sp2 previously depicted as C. yendoi or Mazzaella japonica may belong to genus Chondrus. So, 4 Chondrus species, i.e. C. ocellatus, C. nipponicus, C. armatus, and C. pinnulatus are distributed in China. However, the entity from Connemara, Ireland, named C. crispus, is not a Chondrus species but that of Mastocarpus stellatus, although it is morphologically similar to C. crispus. Phylogenetic analysis based on complete 18S rDNA sequence data shows that genus Chondrus includes 3 main lineages: the Northern Pacific lineage, containing C. ocellatus, C. yendoi, and C. nipponicus; C. armatus, and C. pinnulatus form the sub-North Pacific lineage; and the Northern Atlantic Ocean lineage, comprising samples of C. crispus from Canada, Portugal, Ireland, Germany and France. The phylogenetic relationships indicate that genus Chondrus might have a North Pacific ancestral origin, radiated to North Atlantic area, and then formed the species C. crispus.  相似文献   
47.
A recently discovered Bison-bearing fossil locality at Térapa, Sonora, Mexico, had previously been dated to 440 ± 130 ka using whole rock 40Ar/39Ar on a basalt flow that impounds the deposit. This age is considerably older than the accepted age of about 240–160 ka for the migration of Bison into greater North America. The Térapa deposit also contains a mixture of fossils from extralimital or extinct tropical animals and temperate animals. Constraining the age of the deposit is critical to interpret the paleontologic and paleoclimatologic implications of this unique Sonoran fossil locality. Three additional geochronological methods have been applied to this deposit (infrared stimulated luminescence (IRSL), amino acid racemization (AAR), and radiocarbon) and the data from the original 40Ar/39Ar age were revisited. The IRSL data suggest that the impounding basalt flow and the sediments that abut it were emplaced 43 ka ago and that the oldest sediments were deposited shortly after. Two radiocarbon ages suggest the fossiliferous sediments were emplaced by 42 ka. Effective diagenetic temperatures inferred from the AAR results, combined with AAR data from a similar-age deposit in southern Arizona, are in accordance with the 40–43 ka age estimates. For the AAR results to corroborate the 40Ar/39Ar age, the effective diagenetic temperature for the area would need to be approximately 3 °C, which is unrealistically low for northern Mexico. The new geochronological results suggest the Térapa deposit and fossils are 40–43 ka old. The anomalously old 40Ar/39Ar age for the impounding basalt is probably the result of low 40Ar* concentrations and inherited 40Ar.  相似文献   
48.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   
49.
Deep crustal reflection data that are critical for the interpretation of Laramide structure have been obtained by the Consortium for Continental Reflection Profiling (COCORP). The Laramide orogeny, which occurred from the late Cretaceous to early Eocene, is characterized in Wyoming by large uplifts of Precambrian basement, commonly flanked by reverse faults. The attitude of these faults at depth has been a major tectonic problem and is very important for deciding whether horizontal or vertical crustal movements were primarily responsible for the basement uplifts. COCORP has run 158 km of deep seismic reflection profiles (recording to 20-sec two-way travel time) across the southeastern end of the Wind River Mountains, the largest of these Laramide uplifts. Reflections from the thrust fault flanking the Wind River uplift can be clearly traced on the profiles to at least 24-km depth and possibly as deep as about 36 km with a fairly uniform apparent dip of 30°–35°. Other reflection events subparallel to the main Wind River thrust are present in the seismic profiles and may represent other faults. There is at least 21 km of crustal shortening along the thrust. There is no evidence in the reflection profiles for large-scale folding of the basement; the Wind River Mountains were formed predominantly by thrust movements. Gravity anomalies in the Wind River Mountains can be modeled by a thrust that displaces dense material in the lower crust. If the thrust ever cut the Moho, the effect is not observed in the gravity today. A proposed model for the presence of uplifted basement in Wyoming invokes a shallowly dipping, subducted Farallon plate beneath the North American continent; drag between the two plates localized compressional stresses in an area over 800 km into the North American plate causing large thrusts to develop. The earth's crust seems to have fractured as a fairly rigid plate  相似文献   
50.
New Sr and C isotopic data, both obtained on the same samples of marine carbonates, provide a relatively detailed record of isotopic variation in seawater through the latest Proterozoic and allow, for the first time, direct correlation of these isotopic changes in the Vendian ( 540–610 Ma). The strong isotope variations determined in this study record significant environmental and tectonic changes. Together with a fairly poorly constrained Nd isotopic record, the Sr and C isotopic records can be used to constrain rates of erosion, hydrothermal alteration and organic C burial. Further, comparison of these records with those of the Cenozoic permit investigation of the general relationship between global tectonics and continental glaciation. In particular, results of this study show a very large change in the 87Sr/86Sr of marine carbonates from low pre-Vendian ( > 610 Ma) values ( 0.7066) to high Middle Cambrian values ( 0.7090). This change is greater in magnitude than the significant increase in seawater 87Sr/86Sr through the Cenozoic. Both changes are attributed to high erosion rates associated with continent-continent collisions (Pan-African and Himalayan-Tibetan). In the latest Proterozoic these high erosion rates, probably coupled with high organic productivity and anoxic bottom-water conditions, contributed to a significant increase in the burial rate of organic C. Ice ages mark both the Neoproterozoic and Cenozoic, but different stratigraphic relationships between the Sr isotopic increase and continental glaciation indicate that uplift-driven models proposed to explain Cenozoic climatic change cannot account for the latest Proterozoic ice ages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号